

Daily Tutorial Sheet-5	Level-1

- **61.(D)** $H_2PO_4^- \iff HPO_4^{2-} + H^+$
- **62.(C)** $HO_2^- \longrightarrow H^+ + CO_2^{2-}$ conjugate base
- **63.(B)** pH scale was introduced by Sorensen
- **64.(B)** The solution is slightly basic because concentration of KOH is too low. The concentration of OH⁻ is contributed not only from KOH but also from water.
- **65.(D)** The solution is slightly acidic because concentration of HCl is too low. The concentration of H⁺ is contributed not only from HCl but also from water. pH is between 6 and 7
- **66.(A)** No. of Moles in 1L water = $\frac{1000}{18}$

Degree of ionization = $\frac{10^{-7}}{1000 / 18} \times 100 = 1.8 \times 10^{-7} \%$

- **67.(C)** $HN_3 \rightleftharpoons H^+ + N_3^-$
- **68.(B)** $NH_4^+ + H_2O \rightleftharpoons NH_4OH + H^+$ Solution will be acidic
- **69.(A)** Bicarbonate is HCO_3^- , its conjugate base is CO_3^{2-}
- **70.(D)** Acid strength: $HCl > CH_3COOH > NH_4^+$ Conjugate Base strength $Cl^- < CH_3COO^- < NH_3$
- **71.(D)** CH₃COO⁻ cannot donate H⁺
- 72.(A) SnCl₄ is Lewis acid as it has empty d-orbitals
- **73.(D)** Acid and its conjugate differs only by one H⁺

75.(C) HQ(aq)
$$\rightleftharpoons$$
 H⁺(aq) + Q⁻(aq)
 $t = t_{eq} \quad 0.1 - 10^{-3} \quad 10^{-3} \quad 10^{-3}$
 ≈ 0.1
 $\Rightarrow \quad K_a = \frac{10^{-3} \times 10^{-3}}{0.1} = 10^{-5}$

VMC | Chemistry 104 Ionic Equilibrium